2025-07-15 22:29:542024年十大前沿图像分割模型汇总:工作机制、优点和缺点介绍

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【太基于深度学习的阳能电池板检测与分析系统】59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】65.【基于深度学习的道路交通事故检测识别系统】66.【基于深度学习的安检X光危险品检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~ 三、深度学习【Pytorch】专栏【链接】 四、【Stable Diffusion绘画系列】专栏【链接】 五、YOLOv8改进专栏【链接】,持续更新中~~ 六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

引言1.Segment Anything Model(SAM)优点缺点

2. DINOv2优点缺点

3. Mask2Former优点缺点

4. Swin Transformer优点缺点

5. SegFormer优点缺点

6. MaxViT优点缺点

7. HRNet优点缺点

8. Deeplabv3+优点缺点

9. U-Net++优点缺点

10. GC-Net (Global Context Network)优点缺点

总结

引言

图像分割是计算机视觉中的一项关键任务,涉及将图像分割成多个片段,从而更容易分析图像中的不同对象或区域。近年来,人们开发了众多型号来实现该领域的最先进性能,每种型号都带来了独特的优势。下面,我们将探讨2024年的十大图像分割模型,详细介绍它们的工作机制、优点和缺点。

1.Segment Anything Model(SAM)

SAM是一种多功能分割模型,旨在处理任何图像,允许用户只需点击几下即可执行对象分割。它支持各种类型的输入提示,如边界框或文本,使其高度灵活。

SAM利用大规模的注释图像数据集,使用基于图像的方法进行分割。它使用视觉变换器(ViTs)作为主干,并通过用户指定的提示适应不同的分割需求。

优点

多功能: 可以处理多种类型的分割提示。可扩展性: 在大规模数据集上进行预训练,使其具有高度的可推广性。快速: 交互式应用程序的近实时性能。

缺点

高计算要求: 需要大量资源进行训练和推理。有限的细粒度控制: 可能难以处理复杂图像中的微小精确细节。

2. DINOv2

DINOv2建立在自监督学习的基础上,可生成可用于分割和其他视觉任务的高质量图像特征。与其前身不同,DINOv2不需要手动标记数据进行训练。

DINOv 2使用ViT架构,使用自监督学习进行训练,以理解对象边界和语义。它可以在预训练后针对分割任务进行微调。

优点

**无标签依赖性:**无需标签数据集即可实现高性能。**可转移特性:**可适应各种下游任务。

缺点

不专门用于分割: 需要进行微调,以获得最佳分割性能。潜在过拟合: 在微调期间可能对特定数据集过拟合。

3. Mask2Former

Mask 2Former是一个通用的图像分割模型,它将语义、实例和全景分割的任务统一到一个框架中。

该模型引入了一个Masked-Attention Transformer,其中注意力机制被应用于被掩蔽的token。这使得模型能够专注于重要区域并相应地对其进行细分。

优点

统一框架: 可以有效地处理多个分段任务。高精度: 在各种基准测试中获得最先进的结果。

缺点

复杂的体系结构: 基于transformer的方法是资源密集型的。训练难度: 需要大量的计算能力进行训练。

4. Swin Transformer

Swin Transformer是一个分层的Transformer模型,设计用于计算机视觉任务,包括图像分割。它建立在通过引入移位窗口机制将transformer用于视觉任务的想法之上。

Swin Transformer采用基于窗口的注意机制,每个窗口处理图像的局部区域,从而实现高效和可扩展的分割。

优点

高效的注意力: 基于窗口的机制减少了计算负载。分层表示: 生成多尺度特征图,提高分割精度。

缺点

有限的全球背景: 专注于本地区域,可能缺少全球背景。复杂性: 实施和微调需要先进的知识。

5. SegFormer

SegFormer是一个简单而有效的基于transformer的语义分割模型,它不依赖于位置编码,并使用分层架构进行多尺度特征表示。

SegFormer将轻量级MLP解码器与transformers集成在一起,以创建多尺度特征层次结构,从而提高性能和效率。

优点

简单高效: 避免复杂的设计选择,如位置编码。强大的泛化能力: 在各种细分任务中表现良好。

缺点

限于语义分割: 不像其他一些模型那样通用。缺乏精细控制: 可能难以处理较小的对象。

6. MaxViT

MaxViT引入了多轴Transformer架构,结合了局部和全局注意力机制,为各种视觉任务(包括分割)提供了强大的结果。

MaxViT利用基于窗口和基于网格的注意力,使模型能够有效地捕获局部和全局依赖关系。

优点

综合注意力: 局部和全局特征提取之间的平衡。多功能: 在各种视觉任务中表现良好。

缺点

高复杂性: 需要大量的计算资源进行训练和推理。难以实现: 复杂的架构使其更难在实践中应用。

7. HRNet

HRNet的设计目的是在整个模型中保持高分辨率的表示,而不像传统的架构那样对中间特征图进行下采样。

HRNet使用并行卷积构建高分辨率表示,确保空间信息在整个网络中得到保留。

优点

**高分辨率输出:**擅长在分割过程中保留细节。**强大的性能:**Consistency在基准测试中提供高准确性。

缺点

重型模型: 计算成本高,尺寸大。慢推理: 比一些轻量级模型慢,使其不太适合实时应用。

8. Deeplabv3+

DeepLabv3+是一个强大且广泛使用的语义分割模型,利用atrous卷积和空间金字塔池化模块来捕获多尺度上下文信息。

DeepLabv3+以多种速率应用atrous卷积来捕获多尺度特征,然后是用于精确对象边界的解码器模块。

优点

高度准确: 在语义分割任务中实现最佳性能。良好的支持: 广泛用于工业和研究,有多种实现。

缺点

资源密集型: 需要大量的内存和计算能力。不适合实时应用: 与最近的模型相比相对较慢。

9. U-Net++

U-Net++是流行的U-Net架构的嵌套版本,旨在提高医学图像分割的性能。

U-Net++通过一系列嵌套和密集的跳跃连接修改了原始U-Net,有助于更好地捕获空间特征。

优点

在医学应用方面很强: 专门为医学图像分割任务而设计。提高准确性: 在许多情况下实现比原始U-Net更好的结果。

缺点

医疗重点: 不像列表中的其他型号那样通用。资源需求: 由于其嵌套架构,需要更多的资源。

10. GC-Net (Global Context Network)

GC-Net引入了一个全局上下文模块,可以捕获图像中的长距离依赖关系,使其有效地执行语义和实例分割任务。全局上下文模块从整个图像中聚合上下文信息,从而在复杂场景中实现更好的分割精度。

GC-Net采用全局上下文块,通过从整个图像而不仅仅是局部区域捕获上下文来增强特征图。这种全局视图允许模型更准确地分割对象,特别是在上下文很重要的情况下(例如,大的或被遮挡的物体)。

优点

捕获长距离重复性: 非常适合在上下文相关的情况下分割复杂图像。高效: 尽管它的功能强大,但全局上下文模块在计算上是高效的,使其适用于各种应用程序。

缺点

有限的实时应用: 虽然高效,但在需要极快推理时间的场景中仍然可能会遇到困难。未针对小对象进行优化: 由于其专注于全局上下文,可能会与较小的对象发生冲突。

总结

本文总结了截至2024年顶级的图像分割模型,每个模型都提供了针对不同任务和背景定制的独特优势。从SAM和Mask 2Former等多功能框架到U-Net++和GC-Net等高度专业化的架构,该领域不断发展,效率和准确性都有所提高。在选择细分模型时,必须考虑特定的用例和资源约束。像Swin Transformer和DeepLabv 3+这样的高性能模型提供了出色的准确性,但更轻,更高效的模型,如SegFormer和GC-Net可能更适合实时应用。毫无疑问,这个充满活力和快速发展的领域将继续取得突破,新的模型将推动计算机视觉的可能性。

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~ 关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!